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As the results in Figure 5 demonstrate, this relationship holds 
true for a variety of cell-based assays, including FYVE, AKT-1, 
PLCδ-PH, Rac-1, MAPKAP-k2, SMAD2 and NFATc1 (all GFP-
based assays performed in live cells).   
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Abstract                      
As high throughput imaging systems, analysis algorithms and associated 
cellular assays have begun to be used in profiling and secondary analysis, 
scientists have used tools derived from primary screening such as Z’ factor to 
assess assay quality. Image-based cellular assays may be better suited to 
lead profiling, where the needs are different and modified criteria should be 
applied in assessing assay quality. We ask the question what statistical 
metrics most accurately reflect the nature and use of cell-based assays in 
lead profiling? We present data from a variety of such assays we have 
developed, such as GFP translocation assays, including simple Z’ factor 
analysis and propose multiple statistical approaches to assess assay quality 
that may be better suited to high information content assays. 
  
 
Introduction                              
We have developed a number of live-cell translocation assays 
that are compatible with high-throughput micro-imaging platforms 
such as the IN Cell Analyzer 3000 and the IN Cell Analyzer 
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where µ = mean signal 

σ  = standard deviation 
p = positive control 
n = negative control 

 
We used this S:N calculation to  assess assay performance of 
eight replicate plates imaged and analyzed using the IN Cell 
Analyzer 1000. The S:N values obtained using this method 
varied greatly (Figure 2, S:N, method A).   
 
By contrast, S:N values were much more consistent between 
replicate plates (Figure 2, method B) when we used an 
alternative method for S:N calculation that takes into account 
1000. To assess assay quality during assay development and for 
subsequent QA, we initially used the  well known measure of 

S:N
 

Figure 5: Correlation between Z’ factor and S:N. The points are actual values 
from several GFP translocation assays read on the IN Cell Analyzer 3000. 
The curve is the theoretical curve for the predicted relationship. Arrows show 
two assays whose performance is indistinguishable by Z’ factor, but distinctly 
different as assessed by S:N. 
 
It can be seen from Figures 4 and 5 that, while Z’ factor may be 
a sensitive indicator of assay performance at the lower end of 
the performance scale (i.e. Z’ < 0.5, S:N < 8), S:N may be a 
more sensitive indicator at the higher end of the performance 
scale.  As S:N increases, Z’ factor approaches 1 asymptotically, 
making it an increasingly less sensitive measure of performance 
improvement.  For example, the arrows in Figure 5 indicate two 
assays whose performance could not confidently be 
distinguished on the basis of Z’ factor, but which have distinctly 
different S:N values.  Both metrics of assay performance (Z’ 
factor and S:N) therefore may be useful in optimizing assay 
performance. 
Ref: Zhang et al J. Biomol. Screening 4, 67-73, 1999. 
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format GFP-MAPKAP-k2 assay.  A. Increasing the dilation factor increases 
the assay magnitude of response (MOR) but also leads to an increase in 
noise associated with both control and treated samples.    B.  Comparison of 

es from the same data set as in A.  S:N analysis 
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variation of both the control and responding sample populations: 
 

CONCLUSION 
 
High information-content image-based cellular assays have 
assay performance, Z’ factor. While Z’ factor is of value in 
assessing the size of the reading window for a screening assay, 
we observed that in some cases Z’ factor analysis obscured 
meaningful differences in assay performance.  Consequently, we 
have explored the use of signal-to-noise as a statistical metric 
more appropriate to the needs of image-based cellular assays.  
 
Results    
A common characteristic of cell-based assays (in contrast to 
many in vitro assays) is that the statistical variation associated 
with control and treated sample populations is often significantly 
different (Figure 1). This phenomenon may be both cell type- and 
target-dependent.  The causes may be manifold, but inherent 
cell population heterogeneity, particularly with respect to cell 
cycle postion, and methods of image analysis have been noted 
as potential contributory factors.  
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Figure 2: Variation of assay performance as assessed by different methods 
of S:N calculation.  Data are from a live-cell GFP-MAPKAP-k2 translocation 
assay (code 25-8008-82) performed on the IN Cell Analyzer 1000.   
 
During assay optimization, S:N (method B) can be a more 
sensitive indicator of assay performance than the Z’ factor.  This 
is demonstrated by the data shown in Figure 3, where Z’ factor 
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properties distinct from more traditional screening assays, 
and their evaluation may therefore require adoption of 
additional statistical metrics.  
 
S:N calculations that take into account standard deviation of 
both positive and negative controls are less prone to error 
than those derived from the standard deviation of negative 
controls only. 
 
Both S:N and Z’ factor may provide valuable information 
during assay and image analysis optimization.   
 
The theoretical relationship between Z’ factor and S:N 
(method B) has been shown to be well supported by the 
results of several cell-based assays performed using IN Cell 
Analyzer 3000 and IN Cell Analyzer 1000. 
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Figure 1: Magnitude of standard deviation (SD) associated with negative 
and positive controls is not always equal.  Data are from a CypHerTM 
assay for agonist-induced activation and internalization of the β2-Adrenergic 
Receptor. 
 
 
Assay performance assessments based on a signal-to-noise 
(S:N) method that does not take into account the standard 
deviation of both control and treated samples will be prone to 
error.  For example, a signal-to-noise metric still cited in 
screening literature for assessment of in vitro assays involves 
dividing the magnitude of assay response by the standard 
deviation of the control (untreated) sample: 
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